Exercise 9

Solve the differential equation.

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}-4\left(r e^{r x}\right)+13\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-4 r+13=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{4 \pm \sqrt{16-4(1)(13)}}{2}=\frac{4 \pm \sqrt{-36}}{2}=2 \pm 3 i \\
r=\{2-3 i, 2+3 i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(2-3 i) x}$ and $e^{(2+3 i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{(2-3 i) x}+C_{2} e^{(2+3 i) x} \\
& =C_{1} e^{2 x} e^{-3 i x}+C_{2} e^{2 x} e^{3 i x} \\
& =e^{2 x}\left(C_{1} e^{-3 i x}+C_{2} e^{3 i x}\right) \\
& =e^{2 x}\left[C_{1}(\cos 3 x-i \sin 3 x)+C_{2}(\cos 3 x+i \sin 3 x)\right] \\
& =e^{2 x}\left[\left(C_{1}+C_{2}\right) \cos 3 x+\left(-i C_{1}+i C_{2}\right) \sin 3 x\right] \\
& =e^{2 x}\left(C_{3} \cos 3 x+C_{4} \sin 3 x\right),
\end{aligned}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are arbitrary constants.

