Exercise 9

Solve the differential equation.

y'' - 4y' + 13y = 0

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y = e^{rx}$.

$$y = e^{rx} \quad \rightarrow \quad y' = re^{rx} \quad \rightarrow \quad y'' = r^2 e^{rx}$$

Plug these formulas into the ODE.

$$r^2 e^{rx} - 4(re^{rx}) + 13(e^{rx}) = 0$$

Divide both sides by e^{rx} .

$$r^2 - 4r + 13 = 0$$

Solve for r.

$$r = \frac{4 \pm \sqrt{16 - 4(1)(13)}}{2} = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i$$
$$r = \{2 - 3i, 2 + 3i\}$$

Two solutions to the ODE are $e^{(2-3i)x}$ and $e^{(2+3i)x}$. By the principle of superposition, then,

$$y(x) = C_1 e^{(2-3i)x} + C_2 e^{(2+3i)x}$$

= $C_1 e^{2x} e^{-3ix} + C_2 e^{2x} e^{3ix}$
= $e^{2x} (C_1 e^{-3ix} + C_2 e^{3ix})$
= $e^{2x} [C_1 (\cos 3x - i \sin 3x) + C_2 (\cos 3x + i \sin 3x)]$
= $e^{2x} [(C_1 + C_2) \cos 3x + (-iC_1 + iC_2) \sin 3x]$
= $e^{2x} (C_3 \cos 3x + C_4 \sin 3x),$

where C_1 , C_2 , C_3 , and C_4 are arbitrary constants.